Job Advertisement Landslide Expert USGS Eastern Region (closes in June)





Kingston, TN



Mamayes, Puerto Rico





# U.S. Geological Survey Thomas L. Holzer

- 1. USGS interest in extreme events
- 2. ShakeMap and PAGER
- 3. Suggestions for GEER to think about before the next extreme event









1. USGS Interest in Extreme Events (Congressionally-mandated Programs)

Coastal and Marine Geology
Water Discipline Programs
Earth Surface Dynamics
Earthquake Hazards
Landslide Hazards
Volcano Hazards



# Extreme Events Investigations Relevant to GEER

- Coastal and Marine Geology
  - Hurricane/Large Storm
  - Tsunami
  - Offshore
- > Water Discipline Programs
  - Flooding/Storm Surge
- Earth Surface Dynamics
  - Debris Flows
  - Landslides
  - Flooding
  - Fire
  - Wind
  - Large Storm

- Earthquake Hazards
  - Shaking
  - Site Response
  - Surface Fault Rupture
  - Liquefaction/Soil Softening
  - Landslides
- Landslide Hazards
  - Climatic
  - Seismic
- > Volcano Hazards
  - Pyroclastic Flows
  - Lahars
  - Ash
  - Lava
  - Gas



# USGS Program Objectives Post-event Investigations

- Hazard Assessment
- Hazard Mapping
- Process Understanding
- Foreign Assistance



# 2. ShakeMap and PAGER

http://earthquake.usgs.gov



### ShakeMap Abbruzzo Earthquake



| PERCEIVED<br>SHAKING      | Notfelt | Weak    | Light   | Moderate   | Strong | Very strong | Severe         | Violent | Extreme    |
|---------------------------|---------|---------|---------|------------|--------|-------------|----------------|---------|------------|
| POTENTIAL<br>DAMAGE       | none    | none    | none    | Very light | Light  | Moderate    | Moderate/Heavy | Heavy   | Very Heavy |
| PEAK ACC.(%g)             | <.17    | .17-1.4 | 1.4-3.9 | 3.9-9.2    | 9.2-18 | 18-34       | 34-65          | 65-124  | >124       |
| PEAK VEL.(cm/s)           | <0.1    | 0.1-1.1 | 1.1-3.4 | 3.4-8.1    | 8.1-16 | 16-31       | 31-80          | 60-116  | >118       |
| INSTRUMENTAL<br>INTENSITY | I       | 11-111  | IV      | V          | VI     | VII         | VIII           | IX      | X+         |

## Did you feel it? (Community Internet Intensity Map)



### CIIM 2003 M6.6 San Simeon EQ

"I was on the computer in my office when my dog came in in a panic. I reached over to pet her when the quake began. I got to my feet and looked out the window toward my neighbors house. Approximately 10 or so seconds into the quake I notice a large crack appearing on the side of their house. At that time I knew it was time to evac. I made it to the front door, approximately 30 feet away. My mother in law came from her back house in a panic. I told her to stay under the doorway in the hall. The rolling subsided considerably the more of a ocean swell for quite a few seconds and then came back with a up and down violent shaking. ..."



USGS Community Internet Intensity Map

| Γ | INTENSITY | - 1     | -    | IV    | V          | VI      | VII         | VIII           | IX      | Х+         |
|---|-----------|---------|------|-------|------------|---------|-------------|----------------|---------|------------|
| Γ | SHAKING   | Notfelt | Weak | Light | Moderate   | S trong | Very strong | Severe         | Violent | Extreme    |
| L | DAMAGE    | none    | none | none  | Very light | Light   | Moderate    | Moderate/Heavy | Heavy   | Very Heavy |



### PAGER-- April 6, 2009, Abbruzzo M6.3 Earthquake

| Est. Modified      | Est. Population                             | Perceived Shaking | Potential Structure Damage |                |  |
|--------------------|---------------------------------------------|-------------------|----------------------------|----------------|--|
| Mercalli Intensity | <b>Exposure</b> ( <i>k</i> = <i>x</i> 1000) | Perceived Shaking | Resistant                  | Vulnerable     |  |
| X                  | X 0                                         |                   | V. Heavy                   | V. Heavy       |  |
| IX                 | 0                                           | Violent           | Heavy                      | V. Heavy       |  |
| VIII               | 4k                                          | Severe            | Moderate/Heavy             | Heavy          |  |
| VII                | 79k                                         | Very Strong       | Moderate                   | Moderate/Heavy |  |
| VI                 | 28k                                         | Strong            | Light                      | Moderate       |  |
| V                  | 989k                                        | Moderate          | V. Light                   | Light          |  |
| IV                 | 5,310k*                                     | Light             | None                       | None           |  |
| II-III             | 3k*                                         | Weak              | None                       | None           |  |
| I*                 |                                             | Not Felt          | None                       | None           |  |

### Estimated Dopulation Exposed to Earthquake Shaking

\*Estimated exposure only includes population within the map area.



| MMI | City           | Population |
|-----|----------------|------------|
| VII | L'Aquila       | 68k        |
| VII | Tornimparte    | 2k         |
| VII | Scoppito       | 2k         |
| VII | Pizzoli        | 3k         |
| VI  | Ocre           | 1k         |
| VI  | Poggio Picenze | 1k         |
| V   | Terni          | 105k       |
| IV  | Pescara        | 116k       |
| IV  | Guidonia       | 75k        |
| IV  | Rome           | 2563k      |
| IV  | Perugia        | 149k       |

### Shaking Intensity MMI



# 3. Suggestions for GEER to think about

- Data management
- Anticipate case histories and set priorities



### Loma Prieta Professional Papers

http://pubs.usqs.gov/pp/pp1550/, 1551, 1552, 1553

Earthquake of October 17, 1989-

The Loma Prieta, California, Earthquake of October 17, 1989-Hydrologic Disturbances

Earthquake of October 17, 1989-

Serve on the serve of the serve The Loma Prieta, California, Earthquake of October 17, 1989— Earth Structures and Engineering Characterization of Ground Motion

Loma Prier

Steinake

Archive

The Loma Prieta, California, Earthquake of October 17, 1989-**Building Structures** 

The Loma Prieta, California, Earthquake of October 17, 1989— **Highway Systems** 

U.S. Department of U

The Loma Prieta, California, Earthquake of October 17, 1989— Lifelines



The Loma Prieta, California, Earthquake of October 17, 1989-**Recovery, Mitigation, and Reconstruction** 

The Loma Prieta, California, Earthquake of October 17, 1989-Fire, Police, Transportation, and Hazardous Materials

Solution of the solution of th

The Loma Prieta, California, Earthquake of October 17, 1989-**Public Response** 

The Loma Prieta, California, Earthquake of October 17, 1989-Loss Estimation and Procedures



# Data Management

### Plan recognized need (2002)



### Scoping study (2008)

http://www.americanlifelinesalliance.org/



# Set Priorities for Case Histories

## "Delayed" failures

Failures after earthquake shaking has subsided are typically attributed to pore-water pressure migration. Some of these failures may be caused by cyclic straining from surface waves.









**Downhole Displacements** 

### Wildlife (1987)

### Seed and Lee (1966) Cyclic Strain Test Constant Amplitude Strain







# Showa Bridge



### 1964 Niigata M7.5 Earthquake



# Lower San Fernando Dam Failure 1971 San Fernando M6.6 Earthquake





# U.S. Geological Survey Organization Chart



rld

sci

